4 research outputs found

    INFLUENCE OF DEFORMATION CONDITIONS ON THE RHEOLOGICAL PROPERTIES OF 6xxx SERIES Al ALLOY

    Get PDF
    Knowledge of the characteristics describing the technological properties of the material is the basis for correct numerical simulation and the design of new technological processes or the modernization of existing ones. For each technological process of plastic forming, a set of features should be defined that correctly describe the susceptibility of the material to its shaping in a given process.The paper presents the results of rheological tests of 6xxx series Al alloy, obtained for deformation parameters corresponding to the process of the extrusion of large-size profiles. The effect of deformation conditions on changes in yield stress was determined. Next, the true values of the mathematical model coefficients describing the rheological properties of the tested material were determined using the inverse method, which is the basis for conducting numerical tests

    FARSEC: A Reproducible Framework for Automatic Real-Time Vehicle Speed Estimation Using Traffic Cameras

    Full text link
    Estimating the speed of vehicles using traffic cameras is a crucial task for traffic surveillance and management, enabling more optimal traffic flow, improved road safety, and lower environmental impact. Transportation-dependent systems, such as for navigation and logistics, have great potential to benefit from reliable speed estimation. While there is prior research in this area reporting competitive accuracy levels, their solutions lack reproducibility and robustness across different datasets. To address this, we provide a novel framework for automatic real-time vehicle speed calculation, which copes with more diverse data from publicly available traffic cameras to achieve greater robustness. Our model employs novel techniques to estimate the length of road segments via depth map prediction. Additionally, our framework is capable of handling realistic conditions such as camera movements and different video stream inputs automatically. We compare our model to three well-known models in the field using their benchmark datasets. While our model does not set a new state of the art regarding prediction performance, the results are competitive on realistic CCTV videos. At the same time, our end-to-end pipeline offers more consistent results, an easier implementation, and better compatibility. Its modular structure facilitates reproducibility and future improvements

    Investigation of the Influence of Hot Forging Parameters on the Closing Conditions of Internal Metallurgical Defects in Zirconium Alloy Ingots

    No full text
    In this article, we present research results on the closing conditions of internal metallurgical discontinuities during the hot elongation operation of a Zr-1%Nb alloy ingot using physical and numerical modeling. Research on the influence of thermal and deformation parameters of elongation operations on the rheological behavior of a Zr-1% Nb alloy was conducted using the Gleeble 3800 metallurgical process simulator. Modeling of the influence of thermal–mechanical parameters of hot elongation operations in combinations of rhombic and flat anvils on the closure of metallurgical discontinuities was performed with the help of the FORGE®NxT 2.1 program. Based on the results of the research, recommendations were made regarding forging elongation technology and the geometry of working tools in order to ensure the closure of metallurgical discontinuities during hot elongation operations of Zr-1% Nb alloy ingots

    Investigation of the Influence of Hot Forging Parameters on the Closing Conditions of Internal Metallurgical Defects in Zirconium Alloy Ingots

    No full text
    In this article, we present research results on the closing conditions of internal metallurgical discontinuities during the hot elongation operation of a Zr-1%Nb alloy ingot using physical and numerical modeling. Research on the influence of thermal and deformation parameters of elongation operations on the rheological behavior of a Zr-1% Nb alloy was conducted using the Gleeble 3800 metallurgical process simulator. Modeling of the influence of thermal–mechanical parameters of hot elongation operations in combinations of rhombic and flat anvils on the closure of metallurgical discontinuities was performed with the help of the FORGE®NxT 2.1 program. Based on the results of the research, recommendations were made regarding forging elongation technology and the geometry of working tools in order to ensure the closure of metallurgical discontinuities during hot elongation operations of Zr-1% Nb alloy ingots
    corecore